Polyproline II helix is the preferred conformation for unfolded polyalanine in water.
نویسندگان
چکیده
Does aqueous solvent discriminate among peptide conformers? To address this question, we computed the solvation free energy of a blocked, 12-residue polyalanyl-peptide in explicit water and analyzed its solvent structure. The peptide was modeled in each of 4 conformers: alpha-helix, antiparallel beta-strand, parallel beta-strand, and polyproline II helix (P(II)). Monte Carlo simulations in the canonical ensemble were performed at 300 K using the CHARMM 22 forcefield with TIP3P water. The simulations indicate that the solvation free energy of P(II) is favored over that of other conformers for reasons that defy conventional explanation. Specifically, in these 4 conformers, an almost perfect correlation is found between a residue's solvent-accessible surface area and the volume of its first solvent shell, but neither quantity is correlated with the observed differences in solvation free energy. Instead, solvation free energy tracks with the interaction energy between the peptide and its first-shell water. An additional, previously unrecognized contribution involves the conformation-dependent perturbation of first-shell solvent organization. Unlike P(II), beta-strands induce formation of entropically disfavored peptide:water bridges that order vicinal water in a manner reminiscent of the hydrophobic effect. The use of explicit water allows us to capture and characterize these dynamic water bridges that form and dissolve during our simulations.
منابع مشابه
Unfolded state of polyalanine is a segmented polyproline II helix.
Definition of the unfolded state of proteins is essential for understanding their stability and folding on biological timescales. Here, we find that under near physiological conditions the configurational ensemble of the unfolded state of the simplest protein structure, polyalanine alpha-helix, cannot be described by the commonly used Flory random coil model, in which configurational probabilit...
متن کاملInfluence of local and residual structures on the scaling behavior and dimensions of unfolded proteins.
Although recent spectroscopic studies of chemically denatured proteins hint at significant nonrandom residual structure, the results of extensive small angle X-ray scattering studies suggest random coil behavior, calling for a coherent understanding of these seemingly contradicting observations. Here, we report the results of a Monte Carlo study of the effects of two types of local structures, ...
متن کاملThe solvation interface is a determining factor in peptide conformational preferences.
The 21 residue polyalanine-based F(s) peptide was studied using thousands of long, explicit solvent, atomistic molecular dynamics simulations that reached equilibrium at the ensemble level. Peptide conformational preference as a function of hydrophobicity was examined using a spectrum of explicit solvent models, and the peptide length-dependence of the hydrophilic and hydrophobic components of ...
متن کاملStereoelectronic effects on polyproline conformation.
The polyproline type II (PPII) helix is a prevalent conformation in both folded and unfolded proteins, and is known to play important roles in a wide variety of biological processes. Polyproline itself can also form a type I (PPI) helix, which has a disparate conformation. Here, we use derivatives of polyproline, (Pro)10, (Hyp)10, (Flp)10, and (flp)10, where Hyp is (2S,4R)-4-hydroxyproline, Flp...
متن کاملHelix, sheet, and polyproline II frequencies and strong nearest neighbor effects in a restricted coil library.
A central issue in protein folding is the degree to which each residue's backbone conformational preferences stabilize the native state. We have studied the conformational preferences of each amino acid when the amino acid is not constrained to be in a regular secondary structure. In this large but highly restricted coil library, the backbone preferentially adopts dihedral angles consistent wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proteins
دوره 55 3 شماره
صفحات -
تاریخ انتشار 2004